0

Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Hole Angle and Shaping on Leading Edge Showerhead Film Cooling

[+] Author Affiliations
Yiping Lu, David Allison, Srinath V. Ekkad

Louisiana State University, Baton Rouge, LA

Paper No. GT2006-90370, pp. 375-382; 8 pages
doi:10.1115/GT2006-90370
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4238-X | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME

abstract

Detailed film cooling measurements are presented on a turbine blade leading edge model with three rows of showerhead holes. Experiments are run at a mainstream Reynolds number of 19,500 based on cylindrical leading edge diameter. One row of holes is located on the stagnation line and the other two rows are located at ±15° on either side of the stagnation line. The three rows have compound angle holes angled 90° in the flow direction, 30° along the spanwise direction, and the two holes on either side of the stagnation row have and additional angle of 0°, 30°, and 45° in the transverse direction. The effect of hole shaping of the 30° and 45° holes is also considered. Detailed heat transfer coefficient and film effectiveness measurements are obtained using a transient infrared thermography technique. The results are compared to determine the advantages of shaping the compound angle for rows of holes off stagnation row. Results show that, the additional compound angle in the transverse direction for the two rows adjacent to the stagnation row provide significantly higher film effectiveness than the typical leading edge holes with only two angles. Results also show that, the shaping of showerhead holes provides higher film effectiveness than just adding an additional compound angle in the transverse direction and significantly higher effectiveness than the baseline typical leading edge geometry. Heat transfer coefficients are higher as the spanwise angle for this study is larger than typical leading edge geometries with an angle of 30° compared to 20° for other studies.

Copyright © 2006 by ASME
Topics: Cooling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In