Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of a Rotating Blade Platform With Film Cooling From Cavity Purge Flow in a 1-1/2 Turbine Stage

[+] Author Affiliations
Huitao Yang, Hamn-Ching Chen, Je-Chin Han

Texas A&M University, College Station, TX

Paper No. GT2006-90322, pp. 315-324; 10 pages
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4238-X | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME


Numerical simulations were performed to predict the effect of cavity purge flow on the rotating blade platform in a 1-1/2 turbine stage using a Reynolds stress turbulence model together with a non-equilibrium wall function. Simulations were carried out with a sliding mesh for the rotor under three rotating speeds (2000, 2550 and 3000 rpm) and three purge-to-mainstream mass flow ratios (0.5%, 1% and 1.5%) to investigate the effects of rotating speed and coolant purging rate on the rotating blade platform film cooling. The adiabatic film cooling effectiveness was evaluated using the adiabatic wall temperatures with and without coolant purging to examine the true effect of coolant protection. The film cooling effectiveness increases with increasing coolant purging flow ratio from 0.5% to 1.5% of mainstream. Higher rotating speed also enhances film cooling effectiveness for the range of rotating speed considered. The predicted laterally averaged adiabatic film cooling effectiveness is in good agreement with the corresponding experiment data except for the platform leading edge region. However, the detailed effectiveness distribution on the platform is not well predicted by this study. In addition, the detailed instantaneous film cooling effectiveness and the associated heat transfer coefficients for four different time phases are also reported.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In