Full Content is available to subscribers

Subscribe/Learn More  >

High Resolution Film Cooling Effectiveness Comparison of Axial and Compound Angle Holes on the Suction Side of a Turbine Vane

[+] Author Affiliations
Scot K. Waye, David G. Bogard

University of Texas at Austin, Austin, TX

Paper No. GT2006-90225, pp. 195-203; 9 pages
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4238-X | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME


Film cooling adiabatic effectiveness for axial and compound angle holes on the suction side of a simulated turbine vane was investigated to determine the relative performance of these configurations. The effect of the surface curvature was also evaluated by comparing to previous curvature studies and flat plate film cooling results. Experiments were conducted for varying coolant density ratio, mainstream turbulence levels, and hole spacing. Results from these measurements showed that for mild curvature, 2r/d ≈ 160, flat plate results are sufficient to predict the cooling effectiveness. Furthermore, the compound angle injection improves adiabatic effectiveness for higher blowing ratios, similar to previous studies using flat plate facilities.

Copyright © 2006 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In