0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer in a Radially Rotating Square-Sectioned Duct With Two Opposite Walls Roughened by 45° Staggered Ribs

[+] Author Affiliations
Shyy Woei Chang, Wen-Hsien Yeh

National Kaohsiung Marine University, Kaohsiung City, Taiwan, R.O.C.

Tong-Minn Liou, Jui-Hung Hung

National Tsing Hua University, Taiwan, R.O.C.

Paper No. GT2006-90153, pp. 117-126; 10 pages
doi:10.1115/GT2006-90153
From:
  • ASME Turbo Expo 2006: Power for Land, Sea, and Air
  • Volume 3: Heat Transfer, Parts A and B
  • Barcelona, Spain, May 8–11, 2006
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4238-X | eISBN: 0-7918-3774-2
  • Copyright © 2006 by ASME

abstract

This paper describes an experimental study of heat transfer in a radially rotating square duct with two opposite walls roughened by 45° staggered ribs. Air coolant flows radially outward in the test channel with experiments to be undertaken that match the actual engine conditions. Laboratory-scale heat transfer measurements along centerlines of two rib-roughened surfaces are performed with Reynolds number (Re), rotation number (Ro) and density ratio (Δρ/ρ) in the ranges of 7500–15000, 0–1.8 and 0.076–0.294. The experimental rig permits the heat transfer study with the rotation number considerably higher than those studied in other researches to date. The rotational influences on cooling performance of the rib-roughened channel due to Coriolis forces and rotating buoyancy are studied. A selection of experimental data illustrates the individual and interactive impacts of Re, Ro and buoyancy number on local heat transfer. A number of experimental-based observations reveal that the Coriolis force and rotating buoyancy interact to modify heat transfer even if the rib induced secondary flows persist in the rotating channel. Local heat transfer ratios between rotating and static channels along the centerlines of stable and unstable rib-roughened surfaces with Ro varying from 0.1 to 1.8 are in the ranges of 0.6–1.6 and 1–2.2 respectively. Empirical correlations for periodic flow regions are developed to permit the evaluation of interactive and individual effects of rib-flows, convective inertial force, Coriolis force and rotating buoyancy on heat transfer.

Copyright © 2006 by ASME
Topics: Heat transfer , Ducts

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In