0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Steady State Surface Temperature Response of a Novel Micro Loop Heat Pipe to Various Heat Loads

[+] Author Affiliations
M. Ghajar, J. Darabi

University of South Carolina, Columbia, SC

Paper No. HT2005-72551, pp. 633-640; 8 pages
doi:10.1115/HT2005-72551
From:
  • ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
  • Heat Transfer: Volume 2
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4732-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME

abstract

Numerical investigations have been performed to simulate a novel Micro Loop Heat Pipe (MLHP) under steady state conditions. For most electronics, the maximum working temperature is an important design factor; therefore an accurate estimation of this temperature is crucial. The model predicts the steady state temperature distribution at the surface of the heat source as a function of applied heat loads. This code builds upon a previous code developed by the authors [1], and utilizes a hybridizing of an Alternating Direction Implicit (ADI) Computational Fluid Dynamics (CFD) code and relevant thermodynamic equations. Using this simulation tool, the minimum required compensation chamber cavity has been calculated and checked for various operating temperature ranges. Additionally, the design of the MLHP has been improved by evaluating the effects of the geometric feature variations. Considering the fabrication limitations, some of the optimized geometry dimensions were found to be a groove wall thickness of 2um, a groove width of 7um, a wicking structure length of 500μm, and a vapor line width of 2mm.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In