Full Content is available to subscribers

Subscribe/Learn More  >

A PDF/Photon Monte Carlo Method for Radiative Heat Transfer in Turbulent Flames

[+] Author Affiliations
Liangyu Wang, Daniel C. Haworth, Michael F. Modest

Pennsylvania State University, University Park, PA

Paper No. HT2005-72748, pp. 741-745; 5 pages
  • ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
  • Heat Transfer: Volume 1
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4731-4 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


Thermal radiation plays a dominant role in heat transfer for most combustion systems. Accurate predictions of radiative heat transfer are essential for the correct determination of flame temperature, flame structure, and pollutant emissions in combustion simulations. In turbulent flames, transported probability density function (PDF) methods provide a reliable treatment of nonlinear processes such as chemical reactions and radiative emission. Here a second statistical approach, a photon Monte Carlo (PMC) method, is employed to solve the radiative transfer equation (RTE). And a state-of-the-art model for spectral radiative properties, the full-spectrum k-distribution (FSK) method, is employed. The FSK method provides an efficient and accurate approach for spectral integration in radiation calculations. The resulting model is applied to simulate radiation and turbulence/radiation interactions in nonluminous turbulent non-premixed jet flames. The initial results reported here emphasize sensitivities of computed results to variations in the physical and numerical models. Results with versus without radiation, results obtained using two different RTE solvers, and results with a gray-gas approximation versus a spectral FSK method are compared.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In