0

Full Content is available to subscribers

Subscribe/Learn More  >

Free Jet in Confined Combustion Chamber: Numerical Model for Industrial Application in Low NOx Burners

[+] Author Affiliations
Emanuela Colombo, Fabio Inzoli

Politecnico di Milano, Milan, Italy

Enrico Malfa

Centro Sviluppo Materiali CSM S.p.A

Paper No. HT2005-72502, pp. 735-740; 6 pages
doi:10.1115/HT2005-72502
From:
  • ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
  • Heat Transfer: Volume 1
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4731-4 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME

abstract

The present work is focused on the prediction of the fluid dynamics behaviour for natural gas burners characterized by low NOx emissions. The fluid dynamics in the combustion chamber is investigated in order to look for the condition under which it is possible to obtain a diluted combustion. The experimental data used as reference come from two set of tests related to different isothermal flow behaviour: high Reynolds number (Re = 68000) and lower Reynolds number (Re = 5427). Many turbulence models are examined in order to validate high and low Reynolds case. The k-ω models implemented by Wilcox in 1998 seems to properly predict the fluid dynamics behaviour of the jet for high Reynolds numbers, while, for low Reynolds jets, a modification needs to be introduced. The numerical analysis for low Reynolds number, based on an unstructured 2D axial symmetrical grid, shows that no two-equation turbulence models fit the experimental data for low Reynolds jet. Based on the evidence that at low Reynolds number the hypothesis of homogeneous isotropic small turbulence eddy is not valid a modification of k-ω turbulence model’s closure constant has been proposed. This leads to a better agreement with the experimental data. The results demonstrate that great attention needs to be taken and invested in the identification of the turbulence models used in CFD and in the proper tunneling (of the closure coefficient for the turbulence model) that need to be computed case by case accordingly with the specific turbulence level and fluid dynamic features of the jet itself.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In