Full Content is available to subscribers

Subscribe/Learn More  >

Mathematical Imaging of Piloted Diffusion Methane-Air Flames Under Anisotropic Scalar Dissipation Rates

[+] Author Affiliations
Mohsen M. Abou-Ellail

George Washington University, Washington, D.C.

Karam R. Beshay, David R. Halka

Cairo University, Cairo, Egypt

Paper No. HT2005-72439, pp. 723-734; 12 pages
  • ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
  • Heat Transfer: Volume 1
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4731-4 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


The present work is a numerical simulation of the, piloted, non-premixed, methane–air flame structure in a new mathematical imaging domain. This imaging space has the mixture fraction of diffusion flame Z1 and mixture fraction of pilot flame Z2 as independent coordinates to replace the usual physical space coordinates. The predications are based on the solution of two–dimensional set of transformed second order partial differential conservation equations describing the mass fractions of O2 , CH4 , CO2 , CO, H2 O, H2 and sensible enthalpy of the combustion products which are rigorously derived and solved numerically. A three–step chemical kinetic mechanism is adopted. This was deduced in a systematic way from a detailed chemical kinetic mechanism by Peters (1985). The rates for the three reaction steps are related to the rates of the elementary reactions of the full reaction mechanism. The interaction of the pilot flame with the non-premixed flame and the resulting modifications to the structure and chemical kinetics of the flame are studied numerically for different values of the scalar dissipation rate tensor. The dissipation rate tensor represents the flame stretching along Z1, the main mixture fraction, and in the perpendicular direction, along Z2, the pilot mixture fraction. The computed flame temperature contours are plotted in the Z1-Z2 plane for fixed values of the dissipation rate along Z1 and Z2.These temperature contours show that the flame will become unstable when the dissipate rates along Z1 and Z2 increase, simultaneously, to the limiting value for complete flame extinction of 45 s−1 . However, the diffusion flame will extinguish for dissipate rates less than 20 1/s, if unpiloted. It is also noticed that the flame will remain stable if the dissipation rate along Z2 is increased to the limiting value, while the dissipation rate, along Z2, remains constant at a value less than 30 s−1 .

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In