Full Content is available to subscribers

Subscribe/Learn More  >

A Variable Effectiveness Model for Indirect Thermal Storage Devices

[+] Author Affiliations
A. M. Boies, K. O. Homan

University of Missouri at Rolla, Rolla, MO

J. H. Davidson, Wei Liu

University of Minnesota, Minneapolis, MN

Paper No. HT2005-72711, pp. 653-661; 9 pages
  • ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
  • Heat Transfer: Volume 1
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4731-4 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


The performance of indirect thermal storage systems is critically dependent on the degree of thermal contact between the energy storage medium and the energy transfer medium. For liquid-liquid systems, the energy transfer occurs across a heat exchanger for which the overall effectiveness is determined by both tube-side and storage-side convection coefficients. While the tube-side convection is essentially constant throughout a draw at a constant flow rate, the storage-side convection process depends intimately on the natural convection flow driven by the temperature difference between the two fluids. This temperature difference is inherently transient during the discharge process. In the present work, analytical models are developed which predict system behavior for constant and variable heat exchanger effectiveness. The accuracy of each model is quantified in relation to empirical data obtained by Liu et al. [1, 2] in a physical system motivated by application to integral collector storage (ICS) solar water heating devices. From analysis of the empirical data, discharge-averaged values in the constant effectiveness model and in the variable effectiveness model are determined for a range of empirical conditions. The results show that the initial flow transients generated by the start of the discharge process are flow rate dependent and have a significant impact on the observed overall heat transfer coefficients.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In