Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of the Natural Convection Boundary Condition in Microfabricated Structures

[+] Author Affiliations
Xuejiao Hu, Ankur Jain, Kenneth E. Goodson

Stanford University, Stanford, CA

Paper No. HT2005-72698, pp. 641-644; 4 pages
  • ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
  • Heat Transfer: Volume 1
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4731-4 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


Heat loss through surrounding air has important thermal effect on microfabricated structures. This effect is generally modeled as a natural convection boundary condition. However, how to determine the convective coefficient (h) at microscales is a debate. In this paper, a micro heater is fabricated on a suspended thin film membrane. The natural convection is investigated using the 3-omega measurements and complex analytical modeling. It is found that h seems larger than that at larger scales; however, it is also proved that the increased h is actually contributed by heat conduction instead of heat convection. A method of determining the phenomenal h that can be used for microfabricated structures is proposed by using the heat conduction shape factor.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In