Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Analysis of Opposing Flow in Mixed Convection in a Channel With an Open Cavity Below

[+] Author Affiliations
Oronzio Manca, Sergio Nardini

Seconda Università di Napoli, Aversa, CE, Italy

Kambiz Vafai

University of California at Riverside, Riverside, CA

Paper No. HT2005-72526, pp. 617-626; 10 pages
  • ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
  • Heat Transfer: Volume 1
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4731-4 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


In this paper mixed convection in an open cavity with a heated wall bounded by a horizontal unheated plate is investigated experimentally. The cavity has the heated wall on the opposite side of the forced inflow. The results are reported in terms of wall temperature profiles of the heated wall and flow visualization for Reynolds number (Re) from 100 to 2000 and Richardson number (Ri) in the range 4.3–6400; the ratio between the length and the height of cavity (L/D) is in the range 0.5–2.0 and the ratio between the channel and cavity height (H/D) is equal to 1.0. The present results show that at the lowest investigated Reynolds number the surface temperatures are lower than the corresponding surface temperature for Re = 2000, at same the ohmic heat flux. The flow visualization points out that for Re = 1000 there are two nearly distinct fluid motions: a parallel forced flow in the channel and a recirculation flow inside the cavity. For Re = 100 the effect of a stronger buoyancy determines a penetration of thermal plume from the heated plate wall into the upper channel. Moreover, the flow visualization points out that for lower Reynolds numbers the forced motion penetrates inside the cavity and a vortex structure is adjacent to the unheated vertical plate. At higher Reynolds number the vortex structure has a larger extension at same L/D value.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In