0

Full Content is available to subscribers

Subscribe/Learn More  >

Passive Cooling of Heat Generating Cylinders in Parallel Channels

[+] Author Affiliations
G. Nir, V. Dubovsky, Y. Weiss, J. Aharon, G. Ziskind, R. Letan

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Paper No. HT2005-72450, pp. 577-583; 7 pages
doi:10.1115/HT2005-72450
From:
  • ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
  • Heat Transfer: Volume 1
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4731-4 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME

abstract

The objective of this paper is to study cooling by induced convection of vertical cylinders in parallel channels. The system has four vertical channels of circular cross-section, connected to shared entrance and exit horizontal ducts. One to three heat-generating cylinders are mounted inside each channel. The cylinder is 50mm in diameter and 100 mm high. It is heated from inside by a cartridge heater, installed in a drill along the cylinder axis and connected to an external power source. The study aims at finding the preferable configuration in which the maximum and mean temperature of the cylinders would be the lowest. Among the factors explored, there are various channel diameters, non-equal number of cylinders in the channels, different power inputs to the cylinders, and different entrance-exit configurations of the ducts. A laboratory-scale model is studied both experimentally and numerically. Temperature measurements are performed at various locations by fine thermocouples using a multi-channel data acquisition unit. Numerical simulations are performed for the velocity and temperature fields in the system, using the Fluent 6.0 software, accounting for both convection and radiation. The cylinders are modeled as they were built in reality: they have a heat-generating core and conducting body. Comparison of the experimental results with the numerical predictions is presented and discussed.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In