Full Content is available to subscribers

Subscribe/Learn More  >

Ab Initio Investigation of Ionic Hydration With the Polarizable Continuum Model

[+] Author Affiliations
Dimitrios C. Karampinos, John G. Georgiadis, Todd J. Martinez

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. HT2005-72670, pp. 473-480; 8 pages
  • ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
  • Heat Transfer: Volume 1
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4731-4 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


The formulation of an ab initio method for the quantification of the energetics of ionic hydration is reviewed from the viewpoint of thermodynamics and statistical mechanics. The numerical approach, termed as the Polarizable Continuum Model, solves the exact quantum mechanical problem for the solute coupled with the electrostatic problem of the solvent, the latter being described as an effective continuous medium. The results show that the method can reproduce the experimental values of solvation energy for 3 cations and 3 anions by using only one adjustable parameter (scaled ionic radius) and can therefore be used in the furthter study of energetics and structure of hydrated ions.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In