0

Full Content is available to subscribers

Subscribe/Learn More  >

Effective Optical Properties of Nanoporous Silicon

[+] Author Affiliations
Matt Braun, Laurent Pilon

University of California at Los Angeles, Los Angeles, CA

Paper No. HT2005-72643, pp. 463-471; 9 pages
doi:10.1115/HT2005-72643
From:
  • ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
  • Heat Transfer: Volume 1
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4731-4 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME

abstract

Nanoporous materials consist of nanosize voids embedded in a solid matrix. The pores can be closed or open and have various shapes and sizes. Their applications range from optical and optoelectronics devices to biosensors. In order to effectively utilize and characterize nanoporous media for these various applications, models that describe their effective optical properties are necessary. Numerous effective medium models have been proposed. However, validations of these models against experimental data are often contradictory and inconclusive. This issue was numerically investigated by solving the two-dimensional Maxwell’s equations in absorbing nanoporous silicon thin-films. All interfaces are assumed to be optically smooth and characteristic pore size is much smaller than the wavelength of incident radiation so electromagnetic wave scattering by pores can be safely neglected. The envelope method was then used to retrieve the effective index of refraction and absorption index from the computed transmittance. The numerical results agree very well for both the index of refraction and the absorption index with a recent model obtained by applying the Volume Averaging Theory (VAT) to the Maxwell’s equations. However, commonly used models such as the Maxwell-Garnett, Bruggeman, parallel, and series models systematically and sometimes significantly underpredict the numerical results.

Copyright © 2005 by ASME
Topics: Silicon

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In