Full Content is available to subscribers

Subscribe/Learn More  >

Inverse Estimation of Surface Temperature in Nanoscale Using the Artificial Neural Network

[+] Author Affiliations
Bup Sung Jung, Woo Il Lee

Seoul National University, Seoul, Korea

Sun K. Kim

Seoul National University of Technology, Seoul, Korea

Paper No. HT2005-72384, pp. 403-410; 8 pages
  • ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
  • Heat Transfer: Volume 1
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4731-4 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


An inverse heat conduction problem (IHCP) for nanoscale structures was studied. The conduction phenomenon is modeled using the Boltzmann transfer equation. Phonon-mediated heat conduction in one dimension is considered. One boundary, where temperature observation takes place, is subjected to a known boundary condition and the other boundary is exposed to an unknown temperature. The artificial neural network (ANN) is employed to solve the described inverse problem. Sample results are presented and discussed.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In