0

Full Content is available to subscribers

Subscribe/Learn More  >

Molecular Dynamics Simulation of Phonon Transport in EDIP Silicon

[+] Author Affiliations
Lin Sun, Jayathi Y. Murthy

Purdue University, West Lafayette, IN

Paper No. HT2005-72200, pp. 365-370; 6 pages
doi:10.1115/HT2005-72200
From:
  • ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
  • Heat Transfer: Volume 1
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4731-4 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME

abstract

In this paper, molecular dynamics (MD) simulation is employed to compute thermal conductivity, dispersion curves and single mode relaxation times for bulk silicon. A newly-developed environment-dependent interatomic potential (EDIP) is used in our simulations. Using the Green-Kubo method, simulations of bulk silicon thermal conductivity are conducted using 216 to 4096 atoms. The effect of domain size is explored for different temperatures. Thermal conductivity predictions are found to converge to a bulk value for simulations containing 1000 atoms or more, even though the domain is much smaller than the phonon mean free path. A domain-size independent thermal conductivity is computed for temperatures ranging from 300 K to 1000 K and is shown to compare reasonably well with experimental data without the need for correction factors. The MD results are analyzed to obtain phonon dispersion curves along the [100] direction. Dispersion curves are also obtained using EDIP under a harmonic approximation and the classical dynamical matrix approach. The two sets of curves agree reasonably well. Furthermore, single mode phonon relaxation times are computed from the MD simulations. The trend can be curve-fit by third or fourth-order polynomials.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In