Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Phonon Thermal Conductivity of Two Dimensional Nano and Micro Composites in the Longitudinal Direction

[+] Author Affiliations
Ravi Prasher

Intel Corporation, Chandler, AZ

Paper No. HT2005-72116, pp. 359-363; 5 pages
  • ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
  • Heat Transfer: Volume 1
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4731-4 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


The three important length scales in composites made from nano/micro wires and fibers are: 1) the ratio of inter fiber distance and mean free path of the phonons in the host medium 2) the ratio of the diameter of the fiber or the wire and the mean free path of the phonons in the host medium and 3) the ratio of the diameter of the fiber and the mean free path of phonons in the fiber. Modeling of longitudinal thermal conductivity of two-dimensional nano and micro composites has not been attempted in the literature. This paper develops analytical modeling for the longitudinal thermal conductivity of nano and micro composites by solving the Boltzmann transport equation (BTE) for phonons. The paper shows the scattering of phonons in the host medium by the fiber boundaries play a very important role in deciding the thermal conductivity of nano and micro composites. The model is in good agreement with data on thermal diffusivity of Bismuth Telluride nanowire/ Alumina composite.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In