0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer Enhancement in Axial Taylor-Couette Flow

[+] Author Affiliations
S. Gilchrist, C. Y. Ching, D. Ewing

McMaster University, Hamilton, ON, Canada

Paper No. HT2005-72746, pp. 227-233; 7 pages
doi:10.1115/HT2005-72746
From:
  • ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
  • Heat Transfer: Volume 1
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4731-4 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME

abstract

An experimental investigation was performed to determine the effect that surface roughness has on the heat transfer in an axial Taylor-Couette flow. The experiments were performed using an inner rotating cylinder in a stationary water jacket for Taylor numbers of 106 to 5×107 and axial Reynolds numbers of 900 to 2100. Experiments were performed for a smooth inner cylinder, a cylinder with two-dimensional rib roughness and a cylinder with three-dimensional cubic protrusions. The heat transfer results for the smooth cylinder were in good agreement with existing experimental data. The change in the Nusselt number was relatively independent of the axial Reynolds number for the cylinder with rib roughness. This result was similar to the smooth wall case but the heat transfer was enhanced by 5% to 40% over the Taylor number range. The Nusselt number for the cylinder with cubic protrusions exhibited an axial Reynolds number dependence. For a low axial Reynolds number of 980, the Nusselt number increased with the Taylor number in a similar way to the other test cylinders. At higher axial Reynolds numbers, the heat transfer was initially independent of the Taylor number before increasing with Taylor number similar to the lower Reynolds number case. In this higher axial Reynolds number case the heat transfer was enhanced by up to 100% at the lowest Taylor number of 1×106 and by approximately 35% at the highest Taylor number of 5×107 .

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In