0

Full Content is available to subscribers

Subscribe/Learn More  >

The Determination of the Sensitivity of Heat Transfer Systems Using Global Sensitivity and Gaussian Processes

[+] Author Affiliations
A. F. Emery, D. Bardot

University of Washington, Seattle, WA

Paper No. HT2005-72287, pp. 149-156; 8 pages
doi:10.1115/HT2005-72287
From:
  • ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
  • Heat Transfer: Volume 1
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4731-4 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME

abstract

A critical aspect of the design of systems or experiments is a sensitivity analysis to determine the effects of the different variables. This is usually done by representing the response by a Taylor series and evaluating the first order derivatives at a nominal operating point. When there is uncertainty about the operating point, the common approach is the construction of a response surface and Monte Carlo sampling based on the probability distribution of these uncertain variables. When there are many variables it is important to restrict the analysis to those variables to which the response is most sensitive. This can be conveniently done using Global sensitivity, that both defines the most critical variables and also quantifies the effects of interacting variables. This can be a computationally expensive process and for complex models is generally prohibitively expensive. A solution is the use of Gaussian processes that allows one to create a response surface using easy-to-evaluate functions. This paper describes the use of these ideas for a heat transfer problem.

Copyright © 2005 by ASME
Topics: Heat transfer

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In