Full Content is available to subscribers

Subscribe/Learn More  >

Anisotropic Nature of Thermal Transport in Nanoscale Materials

[+] Author Affiliations
Xinwei Wang

University of Nebraska at Lincoln, Lincoln, NE

Paper No. HT2005-72794, pp. 43-51; 9 pages
  • ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
  • Heat Transfer: Volume 1
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4731-4 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


In this work, an equilibrium technique is developed to study the thermal transport in nanomaterials. By directly tracking the relaxation behavior of energy carriers, the developed technique is able to determine the effect of boundary scattering on thermal transport. Since no temperature differential across the material is required to determine its thermal conductivity, the developed technique is applicable to nanomaterials of different shapes and capable of capturing the anisotropic nature of the thermal transport inside. Applying this technique, the thermal transport in several typical nanomaterials—nanofilms, square and round nanowires, and spherical and cubic nanoparticles are studied in detail. A strong anisotropic nature of thermal transport in nanomaterials is observed. For nanofilms and nanowires, the thermal conductivity in the restricted directions (thickness and radial) is smaller than that in the unrestricted direction. This anisotropic nature is more obvious and important when the characteristic size of nanomaterials becomes comparable to or smaller than the mean free path of energy carriers. Our results comparison shows that with the same characteristic size, the shape of the cross section of nanowires has appreciable effect on the thermal transport in the axial direction. For spherical and cubic nanoparticles, little difference is observed between their thermal conductivities.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In