0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Water Flow Rate on Fatigue Life of Ferritic and Austenitic Steels in Simulated LWR Environment

[+] Author Affiliations
Akihiko Hirano

Hitachi, Ltd., Hitachi, Ibaraki, Japan

Michiyoshi Yamamoto

Hitachi, Ltd.

Katsumi Sakaguchi

Japan Power Engineering and Inspection Corp., Hitachinaka, Ibaraki, Japan

Tetsuo Shoji

Tohoku University, Sendai, Miyagi, Japan

Kunihiro Iida

University of Tokyo, Koshigaya, Saitama, Japan

Paper No. PVP2002-1231, pp. 143-150; 8 pages
doi:10.1115/PVP2002-1231
From:
  • ASME 2002 Pressure Vessels and Piping Conference
  • Pressure Vessel and Piping Codes and Standards
  • Vancouver, BC, Canada, August 5–9, 2002
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4650-4
  • Copyright © 2002 by ASME

abstract

The flow rate of water flowing over a steel surface is considered to be one of the most important factors influencing the fatigue life of the steel, because the water flow produces differences in the local environment. The effect of the water flow rate on the fatigue life of carbon, low alloy, and austenitic stainless steels was therefore investigated experimentally. Fatigue testing of low (S = 0.008 wt%) and high (S = 0.016 wt%) sulfur content carbon steels and a low alloy steel was performed at 289°C for various dissolved oxygen concentrations (DO) of less than 0.01 and 0.05, 0.2, and 1 ppm, and at various water flow rates. Three different strain rates of 0.4, 0.01, and 0.001%/s were used in the fatigue tests. For high sulfur carbon steel (S = 0.016 wt%), the effect of a high water flow rate on mitigating fatigue life reduction was more clearly observed at a lower strain rate, irrespective of the DO. This effect of high water flow rate was most notable at a DO of 0.2 ppm, which was the DO level that produced a significant sulfur effect. This indicates that the mechanism responsible for the mitigation of fatigue life reduction is the flushing effect of the water, which eliminates the locally corrosive environment. For high sulfur carbon steel (S = 0.016 wt%), no benefit of a high water flow rate was found at a DO of 0.01 ppm. This was because the environmental effect is insignificant at this low DO level. For low sulfur carbon steel (S = 0.008 wt%) and low alloy steel (S = 0.008 wt%), a high water flow rate had little effect on mitigating fatigue life reduction even at a DO of 0.2 ppm. This indicates that the sulfur is much less influential in low sulfur steel than in high sulfur steel. Fatigue testing of Type 316 nuclear grade stainless steel (316NG) and Type 316 stainless steel (SUS316) was performed at 289°C and 320°C for DO levels of less than 0.01 and 0.05, and 0.2. For austenitic stainless steel, no mitigating effect at a high water flow rate was found. It should be noted rather that there is a possibility that a high water flow rate decreases the fatigue life because a tendency to a slight decrease in fatigue life with an increasing flow rate was observed.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In