0

Full Content is available to subscribers

Subscribe/Learn More  >

Mechanism of Fatigue Crack Initiation in Austenitic Stainless Steels in LWR Environments

[+] Author Affiliations
Omesh K. Chopra

Argonne National Laboratory, Argonne, IL

Paper No. PVP2002-1230, pp. 133-142; 10 pages
doi:10.1115/PVP2002-1230
From:
  • ASME 2002 Pressure Vessels and Piping Conference
  • Pressure Vessel and Piping Codes and Standards
  • Vancouver, BC, Canada, August 5–9, 2002
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4650-4
  • Copyright © 2002 by ASME

abstract

This paper examines the mechanism of fatigue crack initiation in austenitic stainless steels (SSs) in light water reactor (LWR) coolant environments. The effects of key material and loading variables, such as strain amplitude, strain rate, temperature, level of dissolved oxygen in water, and material heat treatment on the fatigue lives of wrought and cast austenitic SSs in air and LWR environments have been evaluated. The influence of reactor coolant environments on the formation and growth of fatigue cracks in polished smooth SS specimens is discussed. Crack length as a function of fatigue cycles was determined in air and LWR environments. The results indicate that decreased fatigue lives of these steels are caused primarily by the effects of the environment on the growth of cracks <200 μm and, to a lesser extent, on enhanced growth rates of longer cracks. A detailed metallographic examination of fatigue test specimens was performed to characterize the fracture morphology. Exploratory fatigue tests were conducted to enhance our understanding of the effects of surface micropits or minor differences in the surface oxide on fatigue crack initiation.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In