0

Full Content is available to subscribers

Subscribe/Learn More  >

Radial Migration of Shed Vortices in a Transonic Rotor Following a Wake Generator: A Comparison Between Time Accurate and Average Passage Approaches

[+] Author Affiliations
Mark G. Turner

University of Cincinnati, Cincinnati, OH

Steven E. Gorrell, David Car

Air Force Research Laboratory, Wright-Patterson AFB, OH

Paper No. GT2005-68776, pp. 1195-1209; 15 pages
doi:10.1115/GT2005-68776
From:
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 6: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4730-6 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME

abstract

This paper shows a comparison of an unsteady simulation using Turbo and an Average Passage simulation for a two blade row configuration consisting of a wake generator followed by a transonic rotor. Two spacings were simulated, both close and far. The unsteady results compare well with experiment especially for the profile of efficiency difference between close and far. An analysis of results helps to explain the unusual profile seen experimentally that is due to the radial migration of wake generator shed vortices with negative radial velocities near the tip. In addition, different components of the average passage body forces (deterministic stresses) are explored that shows the main terms are the axial momentum and the metal blockage.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In