Full Content is available to subscribers

Subscribe/Learn More  >

Towards Excellence in Turbomachinery CFD: A Hybrid Structured-Unstructured RANS Solver

[+] Author Affiliations
Hong Yang, Dirk Nuernberger, Hans-Peter Kersken

German Aerospace Center (DLR), Cologne, Germany

Paper No. GT2005-68735, pp. 1169-1183; 15 pages
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 6: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4730-6 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME


A three-dimensional hybrid structured-unstructured RANS solver has been developed to simulate flows in complex turbomachinery geometries. It is built by coupling an existing structured CFD solver with a newly developed unstructured-grid module via a conservative hybrid-grid interfacing algorithm, so that it can get benefits from the both structured and unstructured grids. The unstructured-grid module has been developed with consistent numerical algorithms, data structure, user interface and parallelization to those of the structured one. The numerical features of the hybrid RANS solver are its second-order accurate upwind scheme in space, its SGS implicit formulation of time integration, and its accurate modeling of steady/unsteady boundary conditions for multistage turbomachinery flows. The hybrid-grid interfacing algorithm is essentially an extension of the conservative zonal approach that has been previously applied on the mismatched zonal interface of the structured grids, and it is fully conservative and also second-order accurate. Due to the mismatched grids are allowed at the block interface, users would have great flexibility to build the hybrid grids even with different structured and unstructured grid generators. The performance of the hybrid RANS solver is assessed with a variety of validation and application examples, through which the hybrid RANS solver has been demonstrated to be able to cope with the flows in complex turbomachinery geometries and to be promising for the future industrial applications.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In