Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Maximum Camber Location on Aerodynamics Performance of Transonic Compressor Blades

[+] Author Affiliations
N. X. Chen, H. W. Zhang, Y. J. Xu, W. G. Huang

Chinese Academy of Sciences, Beijing, China

H. Du

Shenyang Aeroengine Research Institute, Shenyang, China

Paper No. GT2005-68541, pp. 1117-1125; 9 pages
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 6: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4730-6 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME


It is well known that to increase rotational velocity is one of the effective measures to increase total pressure ratio. With increasing velocity, under the condition of transonic flow, the obvious effect of maximum camber location on aerodynamics performance of compressor blades especially in the supersonics zone can be found. In order to reduce the blade losses and to improve the blade design methodology it is necessary to study this complex flow mechanism. This paper describes only the influence of relative maximum camber location on aerodynamics performance, mainly adiabatic efficiency. As an example an axial fan was designed and calculated by the methodologies developed at the Institute of Engineering Thermophysics, Chinese Academy of Sciences.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In