Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Sloshing in Fixed and Vertically Excited Containers

[+] Author Affiliations
Jannette B. Frandsen

Louisiana State University, Baton Rouge, LA

Alistair G. L. Borthwick

University of Oxford, Oxford, UK

Paper No. IMECE2002-32948, pp. 1375-1386; 12 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • 5th International Symposium on Fluid Structure Interaction, Aeroelasticity, and Flow Induced Vibration and Noise
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-3659-2 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


Nonlinear effects of standing wave motions in fixed and vertically excited tanks are numerically investigated. The present fully nonlinear model analyses two-dimensional waves in stable and unstable regions of the free-surface flow. Numerical solutions of the governing nonlinear potential flow equations are obtained using a finite-difference time-stepping scheme on adaptively mapped grids. A σ-transformation in the vertical direction that stretches directly between the free-surface and bed boundary is applied to map the moving free surface physical domain onto a fixed computational domain. A horizontal linear mapping is also applied, so that the resulting computational domain is rectangular, and consists of unit square cells. The small-amplitude free-surface predictions in the fixed and vertically excited tanks compare well with 2nd order small perturbation theory. For stable steep waves in the vertically excited tank, the free-surface exhibits nonlinear behaviour. Parametric resonance is evident in the instability zones, as the amplitudes grow exponentially, even for small forcing amplitudes. For steep initial amplitudes the predictions differ considerably from the small perturbation theory solution, demonstrating the importance of nonlinear effects. The present numerical model provides a simple way of simulating steep non-breaking waves. It is computationally quick and accurate, and there is no need for free surface smoothing because of the σ-transformation.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In