0

Full Content is available to subscribers

Subscribe/Learn More  >

An Empirical Prediction Method for Secondary Losses in Turbines: Part II — A New Secondary Loss Correlation

[+] Author Affiliations
M. W. Benner

National Research Council of Canada, Ottawa, Ontario, Canada

S. A. Sjolander

Carleton University, Ottawa, Ontario, Canada

S. H. Moustapha

Pratt & Whitney Canada, Inc., Longueuil, Quebec, Canada

Paper No. GT2005-68639, pp. 637-649; 13 pages
doi:10.1115/GT2005-68639
From:
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 6: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4730-6 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME

abstract

A new empirical prediction method for design and off-design secondary losses in turbines has been developed. The empirical prediction method is based on a new loss breakdown scheme, and as discussed in Part I, the secondary loss definition in this new scheme differs from that in the conventional one. Therefore, a new secondary loss correlation for design and off-design incidence values has been developed. It is based on a database of linear cascade measurements from the present authors’ experiments (Benner [1]) as well as cases available in the open literature. The new correlation is based on correlating parameters that are similar to those used in existing correlations. This paper also focusses on providing physical insights into the relationship between these parameters and the loss generation mechanisms in the endwall region. To demonstrate the improvements achieved with the new prediction method, the measured cascade data are compared to predictions from the most recent design and off-design secondary loss correlations (Kacker and Okapuu [2], Moustapha et al. [3] using the conventional loss breakdown. The Kacker & Okapuu correlation is based on rotating-rig and engine data, and a scaling factor is needed to make their correlation predictions apply to the linear cascade environment. This suggests that there are additional and significant losses in the engine that are not present in the linear cascade environment.

Copyright © 2005 by ASME
Topics: Turbines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In