Full Content is available to subscribers

Subscribe/Learn More  >

Turbine Cascade Flow Control Using a “Wake Filling” Pulsed Plasma Actuator

[+] Author Affiliations
H. Perez-Blanco

Pennsylvania State University, State College, PA

Robert Van Dyken, Aaron Byerley, Tom McLaughlin

U.S. Air Force Academy, USAFA, CO

Paper No. GT2005-68114, pp. 415-428; 14 pages
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 6: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4730-6 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME


Separation bubbles in high-camber blades under part-load conditions have been addressed via continuous and pulsed jets, and also via plasma actuators. Numerous passive techniques have been employed as well. In this type of blades, the laminar boundary layer cannot overcome the adverse pressure gradient arising along the suction side, resulting on a separation bubble. When separation is abated, a common explanation is that kinetic energy added to the laminar boundary layer speeds up its transition to turbulent. In the present study, a plasma actuator installed in the trailing edge (i.e. “wake filling configuration”) of a cascade blade is used to excite the flow in pulsed and continuous ways. The pulsed excitation can be directed to the frequencies of the large coherent structures (LCS) of the flow, as obtained via a hot-film anemometer, or to much higher frequencies present in the suction-side boundary layer, as given in the literature. It is found that pulsed frequencies much higher than that of LCS reduce losses and improve turning angles further than frequencies close to those of LCS. With the plasma actuator 50% on time, good loss abatement is obtained. Larger “on time” values yield improvements, but with decreasing returns. Continuous high-frequency activation results in the largest loss reduction, at increased power cost. The effectiveness of high frequencies may be due to separation abatement via boundary layer excitation into transition, or may simply be due to the creation of a favorable pressure gradient that averts separation as the actuator ejects fluid downstream. Both possibilities are discussed in light of the experimental evidence.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In