Full Content is available to subscribers

Subscribe/Learn More  >

The Design, Development and Evaluation of 3D Aerofoils for High Speed Axial Compressors: Part 2 — Simulation and Comparison With Experiment

[+] Author Affiliations
G. Woollatt

ALSTOM Power Technology Centre, Leicester, UK

D. Lippett, P. C. Ivey, P. Timmis, B. A. Charnley

Cranfield University, Cranfield, Bedfordshire, UK

Paper No. GT2005-68793, pp. 303-316; 14 pages
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 6: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4730-6 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME


The focus of this paper is to report on measurements from and simulation of Cranfield University’s 3-stage high-speed axial compressor test rig. This newly built rig is supported by European Commission funding and has tested a set of conventionally stacked 2D rotor and stator blades (Reference 1). The results were used to evaluate and to assess the performance of several commercially available CFD codes leading to the collaborative design of an advanced three-dimensional blade set. The philosophy behind the advanced design is described. The datum test results show that the state of the art, highly loaded, datum compressor is well matched with limited potential for loss reduction. A comparison is made between the measured results and a series of numerical analyses using the various CFD codes. Although the codes showed reasonable qualitative agreement with each other and the measured data, there were significant differences in the predicted performance of the datum build. Further the codes were unable to grade candidate redesigns consistently on a quantitative basis and therefore increased the difficulty of selecting suitable ‘3d’ features. Generic studies involving sweep, lean and recambering are used to evolve a design philosophy for the advanced three-dimensional design. Over cambering of the end-wall sections, coupled with a suitable stack of the blades, enables the blade count to be reduced. In the presence of a clearance combinations of sweep and lean are used to modify the loading in the clearance gap, thereby influencing the associated losses. The application of three-dimensional features redistributes the flow. The opportunity is therefore taken to rematch the sections based on the predicted results of the CFD codes. The above philosophy is used in the redesign of the datum compressor. Overall characteristics and exit traverse results from the test of the advanced build are compared to those from the datum build.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In