Full Content is available to subscribers

Subscribe/Learn More  >

The Design, Development and Evaluation of 3D Aerofoils for High Speed Axial Compressors: Part 1 — Test Facility, Instrumentation and Probe Traverse Mechanism

[+] Author Affiliations
D. Lippett, P. C. Ivey, P. Timmis, B. A. Charnley

Cranfield University, Cranfield, Bedfordshire, UK

G. Woollatt

ALSTOM Power Technology Centre, Leicester, UK

Paper No. GT2005-68792, pp. 291-302; 12 pages
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 6: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4730-6 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME


This paper, in two parts, reports measurements from, and simulation of, Cranfield University’s 3-stage high-speed axial compressor. Using this newly built rig, supported by European Commission, a consortium of gas-turbine companies have tested a set of conventionally stacked 2D rotor and stator blades. The results from this experiment were used to evaluate and assess the performance of several commercially available CFD codes leading to the collaborative design of an advanced three-dimensional blade set seeking, if possible, a 2% efficiency gain. The limited axial spacing between the measurement planes and the blade rows required the design of a unique seven probe assembly and traverse mechanism able to yaw and pitch the probes and to control the insertion depths. This mechanism was designed to accommodate different probes, such as cobra, fast response (pneumatic) and temperature measuring probes, and deliver area traverses between rotor and stators throughout the compressor. For probe calibration a high speed wind tunnel section was designed to accommodate this mechanism enabling calibrations for Mach numbers up to 0.78, as well as for a wide range of pitch and yaw angles values. This mechanism combined with a post processing programme incorporating a mapping technique for the relative offset of the measurement points on the probe secured very detailed results throughout the compressor. Measurements show the complex three dimensional flow structure and secondary flows associated with tip-leakage, endwall boundary layers, wake transportation and blade row interactions. The importance of a rigorous mapping procedure was particularly useful where the wake thickness was small and pressure gradients high in comparison to the probe size.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In