0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance and Flow Characteristics of an Optimized Supercritical Compressor Stator Cascade

[+] Author Affiliations
Bo Song

Gardner Denver, Inc., Peachtree City, GA

Wing F. Ng

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. GT2005-68569, pp. 199-210; 12 pages
doi:10.1115/GT2005-68569
From:
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 6: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4730-6 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME

abstract

An experimental and numerical study was performed on an optimized compressor stator cascade designed to operate efficiently at high inlet Mach numbers (M1 ) ranging from 0.83 to 0.93 (higher supercritical flow conditions). Linear cascade tests confirmed that low losses and high turning were achieved at normal supercritical flow conditions (0.7 < M1 < 0.8), as well as higher supercritical flow conditions (0.83 < M1 < 0.93), both at design and off-design incidences. The performance of this optimized stator cascade is better than those reported in the literature based on Double Circular Arc (DCA) and Controlled Diffusion Airfoil (CDA) blades, where losses increase rapidly for M1 > 0.83. A 2-D Navier-Stokes solver was applied to the cascade to characterize the performance and flow behavior. Good agreement was obtained between the CFD and the experiment. Experimental loss characteristics, blade surface Mach numbers, shadowgraphs, along with CFD flowfield simulations, were presented to elucidate the flow physics. It is found that low losses are due to the well-controlled boundary layer, which is attributed to an optimum flow structure associated with the blade profile. The multi-shock pattern and the advantageous pressure gradient distribution on the blade are the key reasons of keeping the boundary layer from separating, which in turn accounts for the low losses at the higher supercritical flow conditions.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In