0

Full Content is available to subscribers

Subscribe/Learn More  >

A Perturbation Technique for Flow-Induced Vibration Control

[+] Author Affiliations
L. Cheng, Y. Zhou, M. M. Zhang

Hong Kong Polytechnic University, Kowloon, Hong Kong

Paper No. IMECE2002-33569, pp. 491-500; 10 pages
doi:10.1115/IMECE2002-33569
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • 5th International Symposium on Fluid Structure Interaction, Aeroelasticity, and Flow Induced Vibration and Noise
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-3659-2 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

This paper presents a novel technique to perturb the vortex shedding from a bluff body and subsequently suppress the flow-induced structural vibration. The essence of the technique is to create a local perturbation on the surface of a bluff body using piezoelectric actuators. Experiments were carried out in a wind tunnel. A square cylinder of a height h, flexibly supported on springs at both ends, was allowed to vibrate only in the lift direction. Three actuators were embedded underneath one side, parallel to the flow, of the cylinder. They were simultaneously activated by a sinusoidal wave, thus causing the cylinder surface to oscillate. The structural displacement Y and flow velocity u were simultaneously measured using a laser vibrometer and a single hot-wire, respectively. When the vortex shedding frequency ƒs synchronized with the natural frequency of the dynamic system, Y was estimated to be about 0.08h. This displacement collapsed to 25% once the actuators were excited at a normalized frequency ƒh/U∞ = 0.1 (U∞ is the free-stream velocity) and amplitude of 0.028h. The laser-illuminated flow visualization captured drastically weakened vortices shed from the cylinder. Spectral analysis of the Y and u signals points to the fact that the imposed perturbation has altered the spectral phase at ƒs between fluid excitation and structural vibration from 0 to π, and meanwhile decreased the spectral coherence at ƒs from 0.65 to 0.15. It is expected that the perturbation technique presently investigated will have an important role to play in the flow-induced vibration control, especially with the active control element assimilated into the system.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In