Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Aerodynamic Loads on Dynamic Stability of Slender Launch Vehicle Subjected to an End Rocket Thrust

[+] Author Affiliations
Tsukasa Ohshima, Yoshihiko Sugiyama

Osaka Prefecture University, Sakai-shi, Japan

Paper No. IMECE2002-33034, pp. 109-115; 7 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • 5th International Symposium on Fluid Structure Interaction, Aeroelasticity, and Flow Induced Vibration and Noise
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-3659-2 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


This paper deals with dynamic stability of a slender launch vehicle subjected to aerodynamic loads and an end rocket thrust. The flight vehicle is simplified into a uniform free-free beam subjected to an end follower thrust. Two types of aerodynamic loads are assumed in the stability analysis. Firstly, it is assumed that two concentrated aerodynamic loads act on the flight body at its nose and tail. Secondly, to take account of effect of unsteady flow due to motion of a flexible flight body, aerodynamic load is estimated by the slender body approximation. Extended Hamilton’s principle is applied to the considered beam for deriving the equation of motion. Application of FEM yields standard eigen-value problem. Dynamic stability of the beam is determined by the sign of the real part of the complex eigen-values. If aerodynamic loads are concentrated loads that act on the flight body at its nose and tail, the flutter thrust decreases by about 10% in comparison with the flutter thrust of free-free beam subjected only to an end follower thrust. If aerodynamic loads are distributed along the longitudinal axis of the flight body, the flutter thrust decreases by about 70% in comparison with the flutter thrust of free-free beam under an end follower thrust. It is found that the flutter thrust is reduced considerably if the aerodynamic loads are taken into account in addition to an end rocket thrust in the stability analysis of slender rocket vehicle.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In