0

Full Content is available to subscribers

Subscribe/Learn More  >

A Numerical Modelling of Stator-Rotor Interaction in a Turbine Stage With Oscillating Blades

[+] Author Affiliations
V. I. Gnesin, L. V. Kolodyazhnaya

National Academy of Sciences of Ukraine, Kharkov, Ukraine

R. Rzadkowski

Polish Academy of Sciences, Gdansk, Poland

Paper No. IMECE2002-32975, pp. 51-62; 12 pages
doi:10.1115/IMECE2002-32975
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • 5th International Symposium on Fluid Structure Interaction, Aeroelasticity, and Flow Induced Vibration and Noise
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-3659-2 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

In real flows nonstationary phenomena connected with the circumferential non-uniformity of the main flow and those caused by oscillations of blades are observed only jointly. An understanding of the physics of the mutual interaction between gas flow and oscillating blades, and the development of predictive capabilities is essential for improved overall efficiency, durability and reliability. In the study presented the algorithm proposed involves the coupled solution of 3D unsteady flow through a turbine stage and dynamic problem for rotor blades motion by action of aerodynamic forces without separating of outer and inner flow fluctuations. The partially integrated method involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from one domain is used as boundary condition for the other domain. 3D transonic gas flow through the mutually moving stator and rotor blades with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite-volume difference scheme of Godunov-Kolgan. The structure analysis uses the modal approach and 3D finite element model of a blade. The blade moving is assumed to be constituted as a linear combination of the first natural modes of blade oscillations with the modal coefficients depending on time. There has been performed the calculation for the last stage of the steam turbine. The numerical results for unsteady aerodynamic forces due to stator-rotor interaction are compared with results obtained with taking into account the blades oscillations. It has investigated the mutual influence of both outer flow nonuniformity and blades oscillations. It has shown that amplitude-frequency spectrum of blade oscillations contains the high frequency harmonics, corresponding to rotor moving past one stator blade pitch, and low frequency harmonics caused by blade oscillations and flow nonuniformity downstream from the blade row. Moreover, the spectrum involves the harmonics which are not multiple to the rotation frequency.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In