Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Modeling of Si0.15Ge0.85 by the Traveling Solvent Method

[+] Author Affiliations
T. J. Makriyannis, M. Z. Saghir

Ryerson University, Toronto, ON, Canada

D. Labrie

Dalhousie University, Halifax, NS, Canada

Paper No. IMECE2002-33819, pp. 609-618; 10 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Fluids Engineering
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3657-6 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


The traveling solvent method (TSM) is a relatively new and promising technique for the production of high quality semiconductors. TSM has been tested on many alloys producing pure and homogeneous crystals. In the present study the effect of buoyancy convection on the growth of the Si0.15 Ge0.85 crystal grown by the traveling solvent method is investigated under different heating conditions. The full Navier-Stokes equations together with the energy and solutal equations were solved numerically using the finite element technique. The model take into consideration the losses of heat by radiation and the use of the phase diagram to determine the silicon concentration at the growth interface. Results revealed a strong convection in the solvent, which in turn is detrimental to the growth uniformity in the crystal rod. Additional numerical results showed that the convective heat transfer significantly influences the solute distribution in the liquid zone and the growth rate increases substantially.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In