0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Heat Transfer Analysis of an Innovative Gas Turbine Combustor: Coupled Study of Radiation and Cooling in the Upper Part of the Liner

[+] Author Affiliations
A. Andreini, A. Bacci, C. Carcasci, B. Facchini

University of Florence, Firenze, Italy

A. Asti, G. Ceccherini, E. Del Puglia, R. Modi

GE Energy Oil & Gas, Firenze, Italy

Paper No. GT2005-68365, pp. 1301-1313; 13 pages
doi:10.1115/GT2005-68365
From:
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 3: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4726-8 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME

abstract

A numerical study of a single can combustor for the GE10 heavy-duty gas turbine, which is being developed at GE-Energy (Oil & Gas), is performed using the STAR-CD CFD package. The topic of the present study is the analysis of the cooling system of the combustor liner’s upper part, named “cap”. The study was developed in three steps, using two different computational models. As first model, the flow field and the temperature distribution inside the chamber were determined by meshing the inner part of the liner. As second model, the impingement cooling system of the cold side of the cap was meshed to evaluate heat transfer distribution. For the reactive calculations, a closure of the BML (Bray-Moss-Libby) approach based on Kolmogorov-Petrovskii-Piskunov theorem was used. The model was implemented in the STAR-CD code using its user coding features. Then the radiative thermal load on the liner walls was evaluated by means of the STAR-CD-native Discrete Transfer model. The selection of the radiative properties of the flame was performed using a correlation procedure involving the total emissivity of the gas, the mean beam length and the gas temperature. The estimated heat flux on the cap was finally used as boundary condition for the calculation of the cooling system, consisting of 68 staggered impingement jet lines on the cold side of the cap. The resulting temperature distribution shows a good agreement with the experimental values measured by thermocouples. The results confirm the validity of the implemented procedure, and point out the importance of a full CFD computation as an additional tool to support classic correlation design procedures.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In