0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Surface-Roughness Geometry on Separation-Bubble Transition

[+] Author Affiliations
Stephen K. Roberts, Metin I. Yaras

Carleton University, Ottawa, Ontario, Canada

Paper No. GT2005-68664, pp. 1039-1047; 9 pages
doi:10.1115/GT2005-68664
From:
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 3: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4726-8 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME

abstract

This paper presents measurements of separation-bubble transition over a range of surfaces with randomly distributed roughness elements. The tested roughness patterns represent the typical range of roughness conditions encountered on in-service turbine blades. Through these measurements, the effects of size and spacing of the roughness elements, and the tendency of the roughness pattern toward protrusions or depressions (skewness), on the inception location and rate of transition are evaluated. Increased roughness height, increased spacing of the roughness elements, and a tendency of the roughness pattern toward depressions (negative skewness) are observed to promote earlier transition inception. The observed effects of roughness spacing and skewness are found to be small in comparison to that of the roughness height. Variation in the dominant mode of instability in the separated shear layer is achieved through adjustment of the streamwise pressure distribution. The results provide examples for the extent of interaction between viscous and inviscid stability mechanisms.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In