0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study on the Crash Performance of Aluminum and Steel Rails

[+] Author Affiliations
Chelliah Madasamy, Omar Faruque, Tau Tyan

Ford Motor Company, Dearborn, MI

Paper No. IMECE2002-39079, pp. 223-231; 9 pages
doi:10.1115/IMECE2002-39079
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Transportation: Making Tracks for Tomorrow’s Transportation
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Transportation
  • ISBN: 0-7918-3656-8 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

Increasing government mandated CAFÉ standards are forcing the OEMs to aggressively reduce vehicle weight. Aluminum, with a density of about a third of that of steel, has been established as a viable alternative to steel for the construction of the automotive body structure. However, for aluminum sheet metals, there are still lingering concerns about the reliability and robustness of the available joining techniques such as spot-welding, riveting etc. The investigation reported in this paper was aimed at evaluating the relative performance of self-pierced riveted aluminum rails as compared to spot-welded mild steel and high strength steel rails. A series of straight and curved (S-shaped) rails made of aluminum, mild steel, and high strength steel have been tested. Other design parameters considered in this study include sheet metal thickness, rivet/weld location, rivet/weld spacing, adhesives, temperature, and impact speed. As were observed from the tests, axial crush mode dominated the deformation of all straight rails while bending dominated the deformation of the curved rails. Statistical analysis was performed to find the relative importance and effects of each variable on the average crush load, maximum load and energy absorption. For aluminum rails, the thickness of the sheet metal was found to be the primary controlling factor for both straight and S-rails. Other factors i.e. rivet spacing/location, adhesives, temperature and impact speed, had no significant affect on the performance of the rails. For the steel rails, the sheet metal thickness, impact speed, temperature and material properties, were all found to be significant for the crash behavior. It was also found that the aluminum rails have higher specific energy absorption than the steel rails confirming that aluminum as a material is more efficient in absorbing crush energy than steel.

Copyright © 2002 by ASME
Topics: Aluminum , Steel , Rails

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In