Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Film Cooling Enhancement With Mist Injection

[+] Author Affiliations
Xianchang Li, Ting Wang

University of New Orleans, New Orleans, LA

Paper No. GT2005-69100, pp. 919-929; 11 pages
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 3: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4726-8 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME


Cooling of gas turbine hot section components such as combustor liners, combustor transition pieces, turbine vanes (nozzles) and blades (buckets) is a critical task for improving the life and reliability of hot-section components. Conventional cooling techniques using air-film cooling, impingement jet cooling, and turbulators have significantly contributed to cooling enhancements in the past. However, the increased net benefits that can be continuously harnessed by using these conventional cooling techniques seem to be incremental and are about to approach their limit. Therefore, new cooling techniques are essential for surpassing these current limits. This paper investigates the potential of film cooling enhancement by injecting mist into the coolant. The computational results show that a small amount of injection (2% of the coolant flow rate) can enhance the cooling effectiveness about 30% ∼ 50%. The cooling enhancement takes place more strongly in the downstream region, where the single-phase film cooling becomes less powerful. Three different holes are used in this study including a 2-D slot, a round hole, and a fan-shaped diffusion hole. A comprehensive study is performed on the effect of flue gas temperature, blowing angle, blowing ratio, mist injection rate, and droplet size on the cooling effectiveness with 2-D cases. Analysis on droplet history (trajectory and size) is undertaken to interpret the mechanism of droplet dynamics.

Copyright © 2005 by ASME
Topics: Cooling , Simulation



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In