0

Full Content is available to subscribers

Subscribe/Learn More  >

The Dynamics of the Horseshoe Vortex and Associated Endwall Heat Transfer: Part 2 — Time-Mean Results

[+] Author Affiliations
T. J. Praisner

Pratt and Whitney, East Hartford, CT

C. R. Smith

Lehigh University, Bethlehem, PA

Paper No. GT2005-69091, pp. 909-917; 9 pages
doi:10.1115/GT2005-69091
From:
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 3: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4726-8 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME

abstract

Time-mean endwall heat transfer and flow-field data in the endwall region are presented for a turbulent juncture flow formed with a symmetric bluff body. The experimental technique employed allowed the simultaneous recording of instantaneous particle image velocimetry flow field data, and thermochromic liquid-crystal-based endwall heat transfer data. The time-mean flow field on the symmetry plane is characterized by the presence of primary (horseshoe), secondary, tertiary, and corner vortices. On the symmetry plane the time-mean horseshoe vortex displays a bimodal vorticity distribution and a stable-focus streamline topology indicative of vortex stretching. Off the symmetry plane, the horseshoe vortex grows in scale, and ultimately experiences a bursting, or breakdown, upon experiencing an adverse pressure gradient. The time-mean endwall heat transfer is dominated by two bands of high heat transfer, which circumscribe the leading edge of the bluff body. The band of highest heat transfer occurs in the corner region of the juncture, reflecting a 350% increase over the impinging turbulent boundary layer. A secondary high heat-transfer band develops upstream of the primary band, reflecting a 250% heat transfer increase, and is characterized by high levels of fluctuating heat load. The mean upstream position of the horseshoe vortex is coincident with a region of relatively low heat transfer that separates the two bands of high heat transfer.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In