0

Full Content is available to subscribers

Subscribe/Learn More  >

Convective Heat Transfer Through Film Cooling Holes of a Gas Turbine Blade Leading Edge

[+] Author Affiliations
Elon J. Terrell, Brian D. Mouzon, David G. Bogard

University of Texas at Austin, Austin, TX

Paper No. GT2005-69003, pp. 833-844; 12 pages
doi:10.1115/GT2005-69003
From:
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 3: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4726-8 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME

abstract

Studies of film cooling performance for a turbine airfoil predominately focus on the reduction of heat transfer to the external surface of the airfoil. However, convective cooling of the airfoil due to coolant flow through the film cooling holes is potentially a major contributor to the overall cooling of the airfoil. This study used experimental and computational methods to examine the convective heat transfer to the coolant as it traveled through the film cooling holes of a gas turbine blade leading edge. Experimental measurements were conducted on a model gas turbine blade leading edge composed of alumina ceramic which approximately matched the Biot number of an engine airfoil leading edge. The temperature rise in the coolant from the entrance to the exit of the film cooling holes was measured using a series of internal thermocouples and an external traversing thermocouple probe. A CFD simulation of the model of the leading edge was also done in order to facilitate the processing of the experimental data and provide a comparison for the experimental coolant hole heat transfer. Without impingement cooling, the coolant hole heat transfer was found to account for 50 to 80 percent of the airfoil internal cooling, i.e. the dominating cooling mechanism.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In