Full Content is available to subscribers

Subscribe/Learn More  >

Inverse BEM Method to Identify Surface Temperatures and Heat Transfer Coefficient Distributions at Inaccessible Surfaces

[+] Author Affiliations
Alain J. Kassab, Eduardo A. Divo

University of Central Florida, Orlando, FL

Minking K. Chyu

University of Pittsburgh, Pittsburgh, PA

Frank J. Cunha

Pratt and Whitney, East Hartford, CT

Paper No. GT2005-68873, pp. 755-764; 10 pages
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 3: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4726-8 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME


The purpose of the inverse problem considered in this study is to resolve heat transfer coefficient distributions by solving a steady-state inverse problem. Temperature measurements at interior locations supply the additional information that renders the inverse problem solvable. A regularized quadratic functional is defined to measure the deviation of computed temperatures from the values under current estimates of the heat transfer coefficient distribution at the surface exposed to convective heat transfer. The inverse problem is solved by minimizing this functional using a parallelized genetic algorithm (PGA) as the minimization algorithm and a two-dimensional multi-region boundary element method (BEM) heat conduction code as the field variable solver. Results are presented for a regular rectangular geometry and an irregular geometry representative of a blade trailing edge and demonstrate the success of the approach in retrieving accurate heat transfer coefficient distributions.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In