Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Film Cooling: Part II — Model for Use in 3D CFD

[+] Author Affiliations
André Burdet, Reza S. Abhari, Martin G. Rose

Swiss Federal Institute of Technology, Zürich, Switzerland

Paper No. GT2005-68780, pp. 663-676; 14 pages
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 3: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4726-8 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME


Computational Fluid Dynamics (CFD) has been used recently for the simulation of the aerothermodynamics of film cooling. The direct calculation of a single cooling hole requires substantial computational resources. A parametric study, for the optimization of the cooling system in real engines, is much too time consuming due to the large number of grid nodes required to cover all injection holes and plenum chambers. For these reasons a hybrid approach is proposed, based on the modeling of the near film-cooling hole flow, tuned using experimental data, while computing directly the flow field in the blade-to-blade passage. A new injection film-cooling model is established, which can be embedded in a CFD code, to lower the Central Processing Unit (CPU) costs and reduce the simulation turnover time. The goal is to be able to simulate film-cooled turbine blades without having to explicitly mesh the holes with the plenum chamber. The stability, low CPU overhead level (1%) and accuracy of the proposed CFD-embedded film-cooling model, are demonstrated in the ETHZ steady film-cooled flat plate experiment [5] presented in Part I of this two-part paper. The prediction of film-cooling effectiveness using the CFD-embedded model is evaluated.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In