Full Content is available to subscribers

Subscribe/Learn More  >

Experiments on the Physical Mechanism of Heat Transfer Augmentation by Freestream Turbulence at a Cylinder Stagnation Point

[+] Author Affiliations
A. C. Nix

Naval Air Systems Command, Patuxent River, MD

T. E. Diller

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. GT2005-68616, pp. 593-600; 8 pages
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 3: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4726-8 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME


Detailed time records of velocity and heat flux were measured near the stagnation point of a cylinder in low-speed air flow. The freestream turbulence was controlled using five different grids positioned to match the characteristics from previous heat flux experiments at NASA Glenn using the same wind tunnel. A hot wire was used to measure the cross-flow velocity at a range of positions in front of the stagnation point. This gave the average velocity and fluctuating component including the turbulence intensity and integral length scale. The heat flux was measured with a Heat Flux Microsensor located on the stagnation line underneath the hot-wire probe. This gave the average heat flux and the fluctuating component simultaneous with the velocity signal, including the heat flux turbulence intensity and the coherence with the velocity. The coherence between the signals allowed identification of the crucial positions for measurement of the integral length scale and turbulence intensity for prediction of the time average surface heat flux. The frequencies corresponded to the most energetic frequencies of the turbulence, indicating the importance of the penetration of the turbulent eddies from the freestream through the boundary layer to the surface. The distance from the surface was slightly less than the local value of length scale, indicating the crucial role of the turbulence in augmenting the heat flux. The resulting predictions of the analytical model matched well with the measured heat transfer augmentation.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In