0

Full Content is available to subscribers

Subscribe/Learn More  >

An Investigation of the Application of Roughness Elements to Enhance Heat Transfer in an Impingement Cooling System

[+] Author Affiliations
Changmin Son, Geoffery Dailey

Rolls-Royce plc, Derby, UK

Peter Ireland, David Gillespie

University of Oxford, Oxford, UK

Paper No. GT2005-68504, pp. 465-479; 15 pages
doi:10.1115/GT2005-68504
From:
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 3: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4726-8 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME

abstract

The inclusion of roughness elements on the target surface of a turbine aerofoil impingement cooling system is an attractive means of heat transfer enhancement. In such a system, it is important to minimise additional pressure loss caused by the roughness elements and thus their shape, size and position need to be optimised. The research showed how heat transfer enhancement is normally achieved at the expense of extra pressure loss. A hexagonal roughness element designed by the authors showed up to 10% heat transfer enhancement with minimal extra pressure loss. The present work includes shear pattern visualisation on the target surface, pressure loss measurements and heat transfer coefficient measurements for an impingement cooling system with simply shaped roughness elements-specifically cylindrical & diamond pimples. Flow visualisation results and pressure loss measurements for the above configurations provided criteria for selecting the shape, size and position of the roughness elements. The detailed heat transfer measurements on the target surface and over the roughness elements were used to explain the heat transfer enhancement mechanisms. It was found that the largest contribution to heat transfer is the impingement stagnation point and the developing wall jet regions. However, the research showed that the low heat transfer coefficient region could be made to contribute more by using strategically located roughness elements. A hexagonal rim was designed to cover the complete low heat transfer coefficient region midway between neighbouring jets. The effect of the height, cross sectional shape and wall angle of the hexagonal rim were studied using a series of heat transfer and pressure loss experiments. The transient heat transfer tests were conducted using a triple thermochromic liquid crystal technique and the thermal transient was produced by a fine wire mesh heater. The heat transfer coefficient over the pimples was measured using a hybrid transient method that analysed the thermal transient of the copper pimple. The detailed heat transfer coefficient distributions over the complete area of the target surface provided comprehensive understanding of the performance of the hexagonal rim. Tests were conducted at three different mass flow rates for each configuration. The average and local jet Reynolds numbers varied between 21500 and 31500, and 17000 and 41000 respectively.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In