0

Full Content is available to subscribers

Subscribe/Learn More  >

Spatial Arrangement Dependance of Cooling Performance of an Integrated Impingement and Pin Fin Cooling Configuration

[+] Author Affiliations
Chiyuki Nakamata, Yoji Okita

Ishikawajima-Harima Heavy Industries Company, Ltd., Tokyo, Japan

Shinsuke Matsuno

Ishikawajima-Harima Heavy Industries Company, Ltd., Yokohama, Japan

Fujio Mimura, Masahiro Matsushita, Takashi Yamane, Yoshitaka Fukuyama

Japan Aerospace Exploration Agency, Tokyo, Japan

Toyoaki Yoshida

Tokyo University of Agriculture and Technology, Tokyo, Japan

Paper No. GT2005-68348, pp. 385-395; 11 pages
doi:10.1115/GT2005-68348
From:
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 3: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4726-8 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME

abstract

Experimental and numerical studies were conducted for the development of the integrated impingement and pin-fin cooling configuration. In the development, the spatial arrangements of impingement hole, pin-fin and film cooling (discharge) hole were the main concern. The temperature measurement was performed for different test pieces with various spatial arrangements to clarify the cooling effectiveness variation with the arrangement and the other cooling parameters. Experiments were conducted with 673K hot gas flow and room temperature cooling air. The Reynolds number of gas side flow was 380000 and cooling air Reynolds number was 5000–30000. Test plate surface temperatures were measured using an infrared camera. The cooling effectiveness obtained from the experiment for one specimen was different from that for a specimen that had the same pin density but a different spatial arrangement. So it was confirmed that an arrangement of hole and pin, as well as pin density, was an important parameter. CFD analysis was also conducted to make clear how spatial arrangement affected internal heat transfer characteristics. Pressure losses were also evaluated for each specimen, and total thermal performance was compared. A basic configuration with one pin at the center of a unit area showed the most superior total thermal performance.

Copyright © 2005 by ASME
Topics: Cooling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In