0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal-Mechanical Life Prediction System for Anisotropic Turbine Components

[+] Author Affiliations
F. J. Cunha, M. T. Dahmer

Pratt and Whitney, East Hartford, CT

M. K. Chyu

University of Pittsburgh, Pittsburgh, PA

Paper No. GT2005-68107, pp. 151-164; 14 pages
doi:10.1115/GT2005-68107
From:
  • ASME Turbo Expo 2005: Power for Land, Sea, and Air
  • Volume 3: Turbo Expo 2005, Parts A and B
  • Reno, Nevada, USA, June 6–9, 2005
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-4726-8 | eISBN: 0-7918-3754-8
  • Copyright © 2005 by ASME

abstract

Modern gas turbine engines provide large amounts of thrust and withstand severe thermal-mechanical conditions during the load and mission operations characterized by cyclic transients and long dwell times. All these operational factors can be detrimental to the service life of turbine components and need careful consideration. Engine components subject to the harshest environments are turbine high-pressure vanes and rotating blades. Therefore, it is necessary to develop a turbine component three-dimensional life prediction system, which accounts for mission transients, anisotropic material properties, and multi-axial, thermal-mechanical, strain and stress fields. This paper presents a complete life prediction approach for either commercial missions or more complex military missions, which includes evaluation of component transient metal temperatures, resolved maximum shear stresses and strains, and subsequent component life capability for fatigue and creep damage. The procedure is based on considering all of the time steps in the mission profile by developing a series of extreme points that envelop every point in the mission. Creep damage is factored into the component capability by debiting thermal-mechanical accumulated cycles using the traditional Miner’s rule for accumulated fatigue and creep damage. Application of this methodology is illustrated to the design of the NASA Energy Efficient Engine (E3 ) high pressure turbine blade with operational load shakedown leading to stress relaxation on the external hot surfaces and potential state of overstress in the inner cold rib regions of the airfoil.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In