0

Full Content is available to subscribers

Subscribe/Learn More  >

Vascular Impedance Analysis in Human Pulmonary Circulation

[+] Author Affiliations
Qinlian Zhou, Jian Gao, R. T. Yen

University of Memphis, Memphis, TN

Wei Huang

University of California at San Diego, La Jolla, CA

Paper No. IMECE2002-33525, pp. 433-434; 2 pages
doi:10.1115/IMECE2002-33525
From:
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Advances in Bioengineering
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-3650-9 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME

abstract

Vascular impedance in human pulmonary circulation is analyzed by the fluid dynamic approach. A model representing the entire system of pulmonary circulation is constructed based on experimentally measured morphometric and elasticity data of the vessels. The pulmonary arteries and veins are considered as elastic tubes. Their impedance follows Womersley’s theory and electric analogue. The “sheet-flow” theory is employed to describe the flow in capillaries and thus a microvascular impedance matrix is derived. The input impedance at the main pulmonary artery is calculated under both zone 3 and zone 2 conditions. The results are compared with available experimental data in the literature.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In