Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of MEMS Piezoelectric Micropump for Biomedical Applications

[+] Author Affiliations
Walied A. Moussa

University of Alberta, Edmonton, Alberta, Canada

Ulises F. González

ALGOR, Inc., Pittsburgh, PA

Paper No. IMECE2002-33602, pp. 187-192; 6 pages
  • ASME 2002 International Mechanical Engineering Congress and Exposition
  • Advances in Bioengineering
  • New Orleans, Louisiana, USA, November 17–22, 2002
  • Conference Sponsors: Bioengineering Division
  • ISBN: 0-7918-3650-9 | eISBN: 0-7918-1691-5, 0-7918-1692-3, 0-7918-1693-1
  • Copyright © 2002 by ASME


In this study, we demonstrate the usefulness of Finite Element Analysis (FEA) and simulation techniques in the design of MEMS micropumps. Such pumps provide for the handling of milliliter-scaled fluid volumes desired in many lab-on-a-chip chemical and biomedical applications. This work is focused on a micropump driven by the piezoelectric effect, which in turn invokes the dominant resonance behavior. Because the design of the device is the emphasis of this study, the model was originated in CAD and includes the fme-scale geometric details commonly encountered in a wide variety of micropumps. The model considered in this study is a rectangular micropump with a piezoelectrically actuated diaphragm on its top and two valves on its bottom. The mechanical efficiency of the pump hinges on using resonance to generate sufficient motion of the diaphragm. Mechanical Event Simulation (MES) commercial software from ALGOR was utilized to simulate this motion, and thus provide a method for optimizing the design. The results show that consideration needs to be given to the voltage-driving frequency because of its effect on the pump performance and the stress levels within it.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In