0

Full Content is available to subscribers

Subscribe/Learn More  >

High-Speed Biaxial Tissue Properties of the Human Cadaver Aorta

[+] Author Affiliations
Chirag S. Shah, Matthew J. Mason, King H. Yang, Warren N. Hardy

Wayne State University

Chris A. Van Ee

Design Research Engineering

Richard Morgan, Kennerly Digges

George Washington University

Paper No. IMECE2005-82085, pp. 103-111; 9 pages
doi:10.1115/IMECE2005-82085
From:
  • ASME 2005 International Mechanical Engineering Congress and Exposition
  • Transportation
  • Orlando, Florida, USA, November 5 – 11, 2005
  • Conference Sponsors: Transportation
  • ISBN: 0-7918-4231-2 | eISBN: 0-7918-3769-6
  • Copyright © 2005 by ASME

abstract

Traumatic rupture of the aorta (TRA) is one of the leading causes of mortality in automobile crashes. Finite element (FE) modeling, used in conjunction with laboratory experiments, has emerged as increasingly important tool to understand the mechanisms of TRA. Appropriate material modeling of the aorta is a key aspect of such efforts. The current study focuses on obtaining biaxial mechanical properties of aorta tissue at strain rates typically experienced during automotive crashes. Five descending thoracic aorta samples from human cadavers were harvested in a cruciate shape. The samples were subjected to equibiaxial stretch at a strain rate of 44 s−1 using a new biaxial tissue-testing device. Inertially compensated loads were measured. High-speed videography was used to track ink dots marked on the center of each sample to obtain strain. The aorta tissue exhibited anisotropic and nonlinear behavior. The tissue was stiffer in the circumferential direction with a modulus of 10.64 MPa compared to 7.94 MPa in longitudinal direction. The peak stresses along the circumferential and longitudinal directions were found to be 1.89 MPa and 1.76 MPa, respectively. The tissue behavior can be used to develop a better constitutive representation of the aorta, which can be incorporated into FE models of the aorta.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In